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Abstract

The goal of this work is to analyse whether the
generalized likelihood criterion can be used to ®nd the
best spherical envelope of a macromolecule in a unit
cell. A family of spherical envelopes is ranged in
accordance with their likelihood values calculated by
means of a Monte Carlo-type computer procedure. Two
kinds of envelope families were tested. The ®rst one was
composed of spherical envelopes of ®xed radius but
different positions in the unit cell. In the second case, the
sphere radii were linked to their centre position so that
the total volume occupied by all symmetry-related
spheres was roughly equal to the total volume occupied
by the real molecule. The experiments showed that
when using the ®rst type of envelope the level of the
signal for the right solution is higher than the one
obtained with the straightforward R-factor-based single-
Gaussian-atom search, but spurious maxima (usually
placed on the symmetry axes) may still exist. The use of
the second type of envelope family reduces the level of
the spurious maxima.

1. Introduction

During the past few years, the problem of phasing
macromolecules at low resolution has been a subject of
considerable interest. This is explained by the fact that
traditional methods of structure determination do not
always succeed in the case of large macromolecular
complexes. The molecular replacement (MR) method
can be applied only if the model of a highly homologous
structure is available, while the multiple isomorphous
replacement (MIR) techniques depend on obtaining
isomorphous derivatives, which is often problematic. As
an alternative, ab initio low-resolution phasing can be
attempted as the ®rst stage in the structure determina-
tion of macromolecules. The information thus obtained
can be used for phase extension or as a help during the
application of MIR or MR.

At very low resolution, the unit cell can be roughly
divided into two regions, one of which is occupied by the
molecule and the other by solvent. The boundary
between these two regions is the envelope. One of the

possible approaches to the low-resolution phasing of
proteins involves obtaining the envelope, calculating the
corresponding low-resolution phases and using them as
a starting set for phase extension and re®nement. These
low-resolution phases can be calculated e.g. from the
models consisting of a small number of large Gaussian
scatterers (Podjarny et al., 1987; Lunin et al., 1995) or
even from a simple spherical envelope (Andersson &
HovmoÈ ller, 1996).

The ®rst step in obtaining a ®xed-form envelope is to
determine the centre position. Usually, two approaches
have been used for this determination: the MR method
and the single-sphere search. Using the very low reso-
lution re¯ections, MR can be used even if the sequence
similarity is low or there is only a very low resolution
electron-microscopy image (Urzhumtsev & Podjarny,
1995). In the course of the single-sphere search, the
correct position of the centre can be identi®ed either by
R factors or by correlation coef®cients of the observed
and calculated magnitudes. This search should work if
the low-resolution envelope can be approximated by a
single sphere. This is true for proteins of globular form
and for the cases when nonspherical proteins are packed
in such a way that the solvent regions are approximately
spherical. The single-sphere search has been used for
determining the centre in several cases (Kraut, 1958;
Teeter & Hendrickson, 1979; Harris, 1995; Andersson &
HovmoÈ ller, 1997). Unfortunately, both these and our
calculations show that this is prone to spurious solutions.
Even when it is sometimes possible to calculate correctly
either the centre of the molecule or the solvent region,
the method is not fully reliable and often the results
cannot be interpreted.

The goal of this work is to analyse whether the
generalized likelihood (GL) approach (Lunin et al.,
1998) can be used for increasing the single-sphere-
search reliability. We consider envelopes of spherical
shape as the simplest case, range them in accordance
with the likelihood and take the centre of the region
possessing of the maximal GL value to be the centre of
the molecule. To apply the GL criterion, a great number
of pseudoatomic models are generated randomly for
every trial envelope and the frequency of appearance of
models with a magnitude correlation greater than some
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®xed level is evaluated. As was shown previously (Lunin
et al., 1998), this criterion can be considered as an
analogue of the statistical maximal-likelihood principle.

All tests were performed with experimental rather
than calculated sets of low-resolution data.

2. Methodology

2.1. The generalized likelihood

In the framework of the statistical approach, a given
structure is considered as one of the possible trial sets. In
these trials, N atoms are placed independently in the
asymmetric part of the unit cell following randomly
some prior probability density function q�r�. The
corresponding structure factors can then be calculated
and become random variables. The problem is to
determine the prior q�r� that produces the maximum
agreement between observed and calculated data.
Bricogne (1988) suggested in this situation choosing as
the optimal prior the one that satis®es the statistical
principle of maximum likelihood (Cox & Hinkley, 1974).
This principle was also used for the choice of the most
appropriate structure-factor distribution from the class
of Gaussian distributions (Lunin & Urzhumtsev, 1984;
Read, 1986; Lunin & Skovoroda, 1995; Urzhumtsev,
Skovoroda & Lunin, 1996) when estimating errors in
phases calculated from preliminary models.

For every prior q�r�, the value of the likelihood
L�q�r�� may be de®ned as the probability of getting the
observed set fFo

h g of magnitudes of the structure factors
provided the atoms are randomly generated according
to this prior:

L�q�r�� � PfFh � Fo
h ; for all hg: �1�

The simplest possible envelope is a sphere with radius
R. We call it the envelope-generating sphere. In the unit
cell, the full envelope is a boundary of the region that is
the union of all spheres related by crystallographic
symmetries with the envelope-generating sphere. Below,
we will call this full envelope the spherical envelope. It
is de®ned by the centre and radius of the envelope-
generating sphere. We assume that the prior probability
distribution is equal to a positive constant inside the
envelope and is equal to zero outside it. We can scan the
unit cell and consider many different possible priors of
this kind. One can expect that the prior that is chosen on
the basis of the maximum-likelihood principle would
correspond to the `best' spherical envelope, and the
centre of this region would be the centre of the mol-
ecule. Therefore, we maximize L�q�r��, where

q�r� � 1=V inside the envelope

0 outside the envelope,

�
�2�

provided the envelope is spherical and is de®ned by the
centre coordinates and radius and V is the envelope
volume.

The calculation of the likelihood function (1) is quite
complex. The procedure involves the derivation of the
joint probability distribution function for the set of
structure factors and the integration of this function
over the phases provided that the magnitudes are equal
to the observed ones. Since it is still impossible to obtain
the exact expression for the joint probability function of
the magnitudes and phases, asymptotic expansions are
employed. The Edgeworth series (Klug, 1958) is the
most widely used asymptotic expansion but it yields an
accurate representation only if the deviations of the
unitary structure factors from their mean values are
small. The case of large deviations was considered by
Bricogne (1984); his estimation based on the saddle-
point approximation is more accurate but the ®nal
formula includes an implicit function, obtained from a
large system of nonlinear equations, which is dif®cult to
solve. Integration with respect to phases also induces
serious mathematical dif®culties, which require
numerous simpli®cations. One of such simpli®cations is
the so-called `diagonal approximation' (Bricogne &
Gilmore, 1990) in which nondiagonal elements of the
covariance matrix are replaced by zeros as if the struc-
ture factors were independent. This procedure may
result in the loss of a considerable part of the phase
information.

In this work, we used a simpler approach, which
proved to be quite effective (Lunin et al., 1998). It
employs the generalized likelihood as a criterion of
choice instead of the usual likelihood function. The GL
is an analogue of the likelihood function and is de®ned
as the probability of obtaining a set of magnitudes that
are equal or close to the observed magnitudes:

L!�q�r�� � PfC�fFhgfFo
h g� � !g; �3�

where C is a measure of closeness of two sets of struc-
ture-factor magnitudes and ! is a chosen cut-off level.
Obviously, the de®nition of the generalized likelihood
depends on the choice of the measure of closeness C and
cut-off level !, which are the parameters of the method.
In our tests, C was the coef®cient of the correlation of
the magnitudes, which was calculated by the following
formula:

CF �
P

h�Fh ÿ hFi��Fo
h ÿ hFoi�P

h�Fh ÿ hFi�2
P

h�Fo
h ÿ hFoi�2� �1=2

; �4�

where hFi is a magnitude averaged over the considered
set of re¯ections. The GL may be estimated with a
Monte Carlo-type computer procedure. A large number
of sets, consisting of Nglob pseudoatoms each, are placed
into the unit cell randomly with a given prior probability
function. (If a prior is a function of type (2), this can be
performed easily, by generating atoms only inside the
envelope being considered). For every generated model,
a set of magnitudes fFc

hg and the coef®cient (4) of their
correlation with the observed magnitudes are calcu-
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lated. The probability (3) is estimated as the ratio of the
number of generated models resulting in C values higher
than ! to the total number of the generated models:

L! �
number of models with C � !

total number of generated models
: �5�

When calculating structure factors from the model, we
suppose that the pseudoatoms have an electron-density
Gaussian distribution

��r� � Kglob�4�=Bglob�3=2 exp�ÿ4�2r2=Bglob� �6�
with the same Kglob and Bglob values. It must be
emphasized that, in the statistical model, when working
at a low resolution we use not the real number of usual
atoms but a relatively small number Nglob of arti®cially
huge pseudoatoms (`globs'). So the parameter Bglob in
(6) is not the usual temperature factor but a parameter
de®ning the size of the glob, which may have very large
values in comparison with the usual temperature factors.
The value Bglob in (6) is chosen in the course of special
computer tests (x2.5). It must be noted that the magni-
tude correlation (4) and hence GL value (5) depend on
the Bglob value but do not depend on the Kglob value.
Consequently, the problem of choice of Kglob does not
exist.

Given only the magnitudes of the structure factors, it
is impossible to distinguish solutions that are related by
possible shifts of the origin and enantiomorph trans-
form. Thus, we cannot decide whether the atoms are
placed into the sphere with a centre r or into the sphere
with a centre r� t if t is any permitted shift of the origin.
In fact, we calculate the generalized likelihood based on
the following statistical hypothesis: the atoms are placed
either into a sphere with the centre at a given position or
into any other sphere that is related to this sphere by any
permitted origin±enantiomorph transform.

One can de®ne some grid in the unit cell, consider
every point of this grid as the centre of the envelope
generating sphere, calculate the generalized likelihood
(5) for every full spherical envelope and build an L!
map in the unit cell. Below, we will call the maxima of
this map the peaks.

2.2. Likelihood-based search for the molecule position

We expect that the ranking of the envelopes in
accordance with their GL values allows one to ®nd the
envelope that is centred in the position mostly close to
the centre of the molecule. In the unit cell, the full
envelope comprises not a single sphere but the union of
all symmetrically related spheres. Since the spheres can
overlap, two approaches can be used to de®ne the class
of feasible regions:

(i) the radius of the sphere is ®xed; while scanning the
unit cell, we compare the regions with different volumes
as the spheres may have different overlapped parts
depending on centre positions;

(ii) the volume of the full envelope is ®xed; for every
position of the centre of the envelope-generating sphere,
its radius is adapted so that the volume of the union of
all symmetrically related spheres is equal to this ®xed
value.

Computer tests were performed for both classes of
regions.

2.3. One-Gaussian search for the molecule position

The results of the maximum-likelihood-based search
were compared with the results of a one-Gaussian-atom
search. The model consisting of one Gaussian atom (6) is
placed at every point of some grid in the unit cell. For
this model, a set of magnitudes fFc

hg and the coef®cient
of correlation CF (4) are calculated. On this grid, a CF
map can be built. It is supposed that the correct position
of the model will coincide with the position of the main
peak in the CF map.

2.4. Control functions

Two functions were used to judge the success of the
search when the atomic coordinates for the structure
being studied were known. The ®rst function was the
mean value of the coef®cient of phase correlation
(Lunin & Woolfson, 1993):

C' �
P

h

�Fo
h �2 cos�'true

h ÿ 'h�
.P

h

�Fo
h �2; �7�

where f'true
h g is the set of the true phases calculated from

the known model and f'hg is a phase set calculated for
the pseudoatom model. Each time before calculating
(7), the phase alignment was produced (Lunin &
Lunina, 1996). This procedure is necessary because the
experimental magnitudes do not ®x the origin and the
enantiomorph unambiguously. The mean phase corre-
lation hC'i was de®ned for a trial envelope as a value (7)
averaged over all pseudoatom models generated.

The second control function was the trapping function
de®ned as the ratio

T � number of model atoms inside the envelope

total number of atoms in the model
:

�8�

2.5. The strategy of the tests

The general strategy for every data set involved the
following steps:

(i) a grid for the considered centres of envelope-
generating spheres was introduced and the number of
globs Nglob was speci®ed;

(ii) the optimal Bglob value was chosen; a great
number of pseudoatoms models were placed using the
uniform prior distribution of atomic coordinates and
mean values of the magnitude correlation (4) were
calculated with different Bglob values; the value resulting
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in the highest mean magnitude correlation was
suggested to be the optimal;

(iii) for every grid node, the full sphere-based
envelope was constructed and the value of the gener-
alized likelihood L! was calculated;

(iv) the CF map was calculated for the one-Gaussian-
atom search;

(v) when the atomic models were known, the values
of control functions hC'i and T were calculated for
every tested envelope.

The calculations were performed for different values
of the resolution zone, sphere radii or the full envelope
volume, number Nglob of atoms and cut-off level !.

3. Tests and results

3.1. Data sets

Six sets of experimental data were used in tests:
(a) 50 AÊ neutron diffraction data for the tRNAAsp±

Asp RS complex (Moras et al., 1983); I432, a = b = c =
354 AÊ ; the structure was previously solved by the
molecular replacement method (Urzhumtsev et al.,
1994);

(b) X-ray diffraction data of the ribosomal particle
50S from Thermus thermophilus (Volkmann et al., 1990);
P43212, a = b = 495, c = 196 AÊ ; the position of the
particle in the unit cell was previously found indepen-
dently by the few-atoms model (FAM) (Lunin et al.,
1995) and molecular replacement methods
(Urzhumtsev, Vernoslova & Podjarny, 1996).

(c) X-ray diffraction data for four proteins crystal-
lized in the space group P212121: RNAase Sa (Sevcik et
al., 1991), a = 64.90, b = 78.32, c = 38.79 AÊ ; protein G
(kindly supplied by E. Dodson), a = 34.9, b = 40.3,
c = 42.2 AÊ ; -crystallin IIIb (Chirgadze et al., 1991),
a = 58.7, b = 69.5, c = 116.9 AÊ ; and ribosomal elongation
factor G (Aevarsson et al., 1994), a = 75.9, b = 105.6,
c = 115.9 AÊ .

3.2. The complex tRNAAsp±Asp RS

In the ®rst series of calculations, the envelopes were
de®ned as the union of ®xed-size spheres related by
crystallographic symmetries. The likelihood maps
calculated at the resolutions 40 and 60 AÊ for different
choices of the spheres' radius and ! levels revealed a
similar picture. The map showed a few peaks, one
corresponding to the right solution and the others being
strong false peaks, which are situated on the symmetry
axes. It is necessary to point out that the maximum
corresponding to the correct solution was only the ®fth
one in the list of the strongest peaks. Similar results were
obtained for the one-Gaussian-atom search. The results
obtained at a resolution of 40 AÊ are presented in
Table 1.

The situation changes if instead of scanning the unit
cell with spheres of constant radius we recalculate the
radius at every position so that the summed volume of
all symmetrically related spheres has a ®xed value. The
tests showed that the value of this volume is a crucial
parameter. If the value of this volume is much less than
the real volume of the molecule, the likelihood map
follows the one-Gaussian search map and false peaks of
the likelihood function are higher than the peak corre-
sponding to the correct solution. If this value is roughly
equal to the real volume of the molecule, the peak
corresponding to the correct solution becomes the
highest. This peak continues to be the highest for a
somewhat increased value of the volume of the
envelope. However, a tendency for levelling of the peaks
appears. Figs. 1(a)±( f ) show the histograms of the
number of models with a given CF value (Figs. 1a, c, e)
and the dependence of the likelihood function on the
cut-off level ! (Figs. 1b, d, f ) for those positions of the
centre of the sphere that correspond to the correct
solution and two spurious peaks. These dependencies
are shown for the different values of the volume of the
envelope. The values of control functions for the ®ve
highest peaks of the likelihood map are listed in Table 2.

3.3. Ribosomal particle T50S

Similar calculations were performed using 60 AÊ

resolution experimental data for the ribosomal particle
T50S (Volkmann et al., 1990). In the cases of both the
®xed radii of the spheres composing the envelopes and
the ®xed total volume of the envelope, the position of
the main maximum on the likelihood map coincided well
with the particle centre obtained by the FAM and the
molecular replacement methods (Urzhumtsev, Verno-

Table 1. The results of the likelihood-based search with
®xed sphere radius and one-Gaussian-atom search for the

position of the Asp RS complex in the unit cell

40 AÊ resolution neutron diffraction data were used The generalized
likelihood value L! [de®ned by equation (6)], the trapping function T
[de®ned by equation (8)] and the mean value hC'i of the map
correlation coef®cient (7) were calculated for envelopes composed by
the symmetry-related spheres of ®xed radii 30 AÊ . 100-atom models
with Bglob = 50 000 and cut-off level ! = 0.60 were used when
calculating L! values The coef®cient of correlation of the magnitudes
CF was calculated as in equation (4) with B = 50 000. The peaks p1±p5
are the ®ve highest peaks found by the single-Gaussian search; note
that they also correspond to the ®ve highest values of the likelihood
function.

Peaks
Likelihood
L!

Trapping
function T

Mean map
correlation
hC'i

One-Gaussian-
atom magnitude
correlation CF

p1 0.48 0.46 0.76 0.63
p2 1.0 0.0 ÿ0.15 0.70
p3 1.0 0.05 ÿ0.03 0.71
p4 1.0 0.03 ÿ0.11 0.67
p5 1.0 0.02 0.18 0.66
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slova & Podjarny, 1996). The one-Gaussian search
resulted in this case in the same position. Nevertheless,
the procedure based on the likelihood maximization

gave a higher signal contrast in a wide range of cut-off
levels ! (Table 3). It is worth noting that generation of
globs with the uniform prior resulted in nearly the same

Fig. 1. Generalized likelihood-based testing of envelopes centred at the points corresponding to peaks p1, p3, p5 shown in Tables 1 and 2. The ratio
of the volume of the envelope to the unit-cell volume was ®xed and equal to: (a) and (b) 15%; (c) and (d) 30%; (e) and ( f ) 60%. 40 AÊ

resolution neutron diffraction data for the AspRS complex were used. The plots are: (a), (c), (e) distribution of the values of the coef®cient of
correlation (4) for 100-atom models (Bglob = 50 000) generated into the trial envelopes; (b), (d), ( f ) dependence of the generalized likelihood
value L on the cut-off level !. The corresponding values of the control criteria are presented in Table 2.
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mean and root-mean square deviation (r.m.s.d.) values
(0.52 and 0.12) of the coef®cient of correlation (4) as in
the case of the one-Gaussian search (0.53 and 0.12,
respectively).

3.4. Protein G

A similar increase in the contrast of the signal for the
right solution was observed in the case of protein G
(Table 4). The position of the molecular centre obtained
by the maximum-likelihood procedure agrees well with
the positions of the maxima of both control functions.
The one-Gaussian-atom search results in the same
position. However, in the case of the likelihood-based
search, the contrast for the correct solution is much
higher than the contrast for the next false solution, as
compared with the one-Gaussian-atom search (Table 4).

3.5. RNAase Sa, -crystallin IIIb and elongation factor G

The method has not led to the correct solution for
RNAase, -crystallin IIIb and G-factor. Possible reasons
are the presence of two molecules in the independent
part of the unit cell in crystals of RNAase and -crys-
tallin and the essentially nonspherical form of the low-
resolution envelope for G-factor. In the RNAase model,
two identical molecules are very densely packed in the

asymmetric unit, which makes it dif®cult to identify the
correct answer. In this case, no correlation between the
maximum of the likelihood map and the position of
the model in the cell is observed. The low-resolution
envelope for -crystallin resembles an ellipsoid rather
than a sphere. However, a visual comparison of the
model with the likelihood maps shows that the positions
of the maxima of the likelihood at different cut-off levels
! are not far from the centre of one of the molecules.
The low-resolution envelope for the G-factor is very
nonspherical and the maxima of the maps of likelihood
and trapping function do not coincide. However, the
visual comparison of the likelihood-function map and
the model shows that the maximum of the likelihood-
function map is situated close to the region of the
highest atomic density. The interpretation of the results
for RNAase, -crystallin and G-factor is complicated by
the fact that all of them belong to the space group
P212121, in which there are eight possible shifts of the
origin and the additional enantiomorph ambiguity.

4. Concluding remarks

The present method made it possible to obtain the true
positions of the centres for three structures: synthetase
complex, T50S ribosome particle and protein G. In the
cases of T50S and protein G, the method enabled a
higher contrast signal to be obtained than in the one-
Gaussian search. In the case of the synthetase complex,
the one-Gaussian search led to spurious solutions on
symmetry axes, while the generalized likelihood
approach eliminated them when being accomplished by
calculating the radius of the sphere for every trial
position of the centre so that the summed volume of all
symmetrically related spheres was roughly equal to the
volume of the molecule. However, the method failed to
provide the correct solution for three proteins in the
space group P212121. Possible reasons are the large
number of possible shifts of the origin and the enan-
tiomorph ambiguity in this space group, and nonglob-

Table 3. The contrast of main peaks in one-Gaussian and
likelihood-based searches for the position of the T50S

particle

HCF � �CFmax ÿ hCFi�=��CF�, HL!
� �Lmax

! ÿ hL!i�=��L!�; CFmax,
hCFi and ��CF� are the maximum, mean and r.m.s.d. values of the
coef®cient of correlation of calculated and observed magnitudes
obtained in the one-Gaussian search; Lmax

! , hLmax
! i and ��L!� are the

similar values for the likelihood-based search The results were
obtained with d = 60 AÊ , R = 0 AÊ , Bglob = = 90 000.

HCF
HL!

! = 0.74 ! = 0.78 ! = 0.82

2.15 4.75 7.08 13.06

Table 2. The results of the likelihood-based search with the ®xed volume of the envelope for the position of the Asp RS
complex in the unit cell

The values of the generalized likelihood value L! [de®ned by equation (6)], the trapping function T [de®ned by equation (8)] and the mean value
hC'i of the map correlation coef®cient (7) are listed for the ®rst ®ve peaks using three different conditions of V/Vcell and ! cut. 40 AÊ resolution
neutron diffraction data were used; L!, T and hC'i were calculated for envelopes composed of the symmetry-related spheres. The sphere radii
were adapted to ®x the ratio of the envelope volume V to the unit-cell volume Vcell. 100-atom models with Bglob = 50 000 and different cut-off
levels ! were used when calculating L! values. The peaks p1±p5 are the same peaks presented in Table 1. The corresponding values of the
likelihood function at different cut-off levels are presented in Figs. 1(b), (d), ( f ) for peaks 1, 3 and 5.

V/Vcell = 0.15, ! cut = 0.60 V/Vcell = 0.3, ! cut = 0.58 V/Vcell = 0.6, ! cut = 0.52

Peaks L! T hC'i L! T hC'i L! T hC'i
p1 0.38 0.77 0.66 0.30 0.54 0.72 0.42 0.96 0.45
p2 0.00 0.16 ÿ0.25 0.00 0.00 ÿ0.17 0.13 0.82 0.33
p3 0.96 0.33 0.15 0.10 0.18 ÿ0.15 0.27 0.60 0.10
p4 0.00 0.44 0.22 0.00 0.15 ÿ0.01 0.08 0.89 0.40
p5 0.65 0.36 0.36 0.02 0.15 0.30 0.18 0.71 0.30
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ular shapes of these proteins. The procedure of structure
solution using the molecular envelopes of more
complicated forms is under development. In the cases of
RNAase, -crystallin and G-factor, it seems reasonable
to try an ellipsoid shape or to use several spheres instead
of a single one to approximate the molecule. Never-
theless, in this case, the search for the maximum of the
likelihood function must be performed in a larger
parameter space and it will be much more time
consuming.
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Table 4. The contrast of the two highest peaks in one-
Gaussian and likelihood-based searches for the position

of the protein G molecule

The HCF and HL!
values are de®ned as in Table 3. The results were

obtained with d = 14 AÊ , Bglob = 1000. The value of the volume of the
summed envelope was ®xed and equal to 30% of the unit-cell volume.

HCF
HL!

! = 0.56 ! = 0.58 ! = 0.60

Main peak 1.88 6.54 7.57 9.10
Highest false peak 1.68 3.06 2.44 2.05


